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Abstract

Block-structured meshes provide the ability to concentrate grid points and computational effort in interesting re-

gions of a flow field, without sacrificing the efficiency and low memory requirements of a regular grid. We describe an

algorithm for simulating radiation diffusion on such a mesh, coupled to multi-fluid gasdynamics. Conservation laws are

enforced by using locally conservative difference schemes along with explicit synchronization operations between dif-

ferent levels of refinement. In unsteady calculations each refinement level is advanced at its own optimal timestep.

Particular attention is given to the appropriate coupling between the fluid energy and the radiation field, the behavior of

the discretization at sharp interfaces, and the form of synchronization between levels required for energy conservation

in the diffusion process. Two- and three-dimensional examples are presented, including parallel calculations performed

on an IBM SP-2.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The block-structured adaptive mesh refinement (AMR) algorithm, originally developed by Berger and
Oliger [6], was shown to be effective for 2D gasdynamics by Berger and Colella [5] and was then extended to

3D by Bell et al. [4]. Coupling the explicit integrator for hyperbolic equations with an implicit multigrid

solver permits the solution of systems which also involve parabolic and elliptic effects. For example, an

algorithm for the incompressible Navier–Stokes equations, presented as a prototype by Howell and Bell

[12] and as a fully developed code by Almgren et al. [1], uses multigrid solvers to implicitly model the elliptic

incompressibility constraint and the parabolic terms for diffusion. Other examples of implicit processes
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coupled to explicit advection in AMR codes include self-gravitation in astrophysics [23], and discrete or-

dinates for radiation in combustion applications [14].

In this paper we will present an Eulerian AMR implementation of single-group radiation diffusion,

coupled to a Godunov integrator for explicit multi-fluid hydrodynamics. Some aspects of the radiation

discretization, particularly with regard to the treatment of sharp interfaces in material properties, deserve

close attention. Radiative fluxes across these interfaces have an immediate, global effect on the solution,

and the adaptive mesh algorithm gives superior results when such effects are computed accurately on coarse

as well as fine grids. Our treatment of these fluxes is, so far as we are aware, original. While it is not our
primary intention to break new ground with respect to these uniform-grid aspects of the scheme, they are

crucial to understanding the overall performance of the adaptive mesh algorithm.

Once the uniform grid algorithm is established, our focus will shift to examining the implications of the

adaptive grid structure and the means of ensuring overall energy conservation while advancing different

grid levels at different timesteps. The presence of multiple grids at each refinement level provides a con-

venient approach to parallelism, which we have exploited along the lines of [20] and by use of the hypre

parallel linear solver package [9], in particular the semicoarsening multigrid solvers described in [3,8,10,22].

We will not discuss the hydrodynamics algorithm itself, the criteria for grid refinement, or the methods used
to allocate refined grids and distribute them across processors, since this paper introduces no new material

relating to any of these topics.

An earlier treatment of the present work, prior to the development of parallel and 3D capabilities,

appeared in [13].

2. AMR essentials

A complete description of the AMR timestepping scheme can be found in many of the references cited in

the previous section, but for this paper we will confine ourselves to a very brief overview. The computa-

tional mesh consists of a hierarchy of refinement levels, each of which is locally uniform and organized as a

union of rectangular patches. Cells on different levels are aligned, and refinement ratios between levels are

typically 2 or 4. Edges of different levels may not be coincident except at the physical boundary—that is,

level lþ 2 may not directly border level l without an intervening region at refinement level lþ 1. For
computational convenience coarse cells are defined under finer grids, but the finest solution in a given

region takes precedence over coarser versions.
The scheme typically refines in time as well as space, both for efficiency and to help maintain an optimal

Courant condition on all levels. The refinement ratios rl in time are the same as those in space—these are
specified by the user along with the specific criteria for refinement. Timestepping is a recursive process,

where a level l is advanced first without reference to any finer levels, then level lþ 1 is advanced rlþ1 times
to catch up (this in turn requires advancing levels lþ 2 and higher). After the finer levels have reached the
time corresponding to the end of the coarse timestep, synchronization operations must be performed to

correct any flux mismatches that have occurred at the coarse–fine interface. For hyperbolic terms in the

equations this is just a local correction, called refluxing [5]. For elliptic and parabolic equations a separate
call to the implicit solver is required.

Fig. 1 shows a possible spatial layout for a grid hierarchy with two refined levels, and Fig. 2 shows a

space–time outline of the temporal refinement strategy. The latter figure shows the refinement ratios (4 and

2 in this case), and features a regridding event where the boundary between levels 1 and 2 was moved. Note

that regridding of finer levels can occur even in the middle of a coarse level timestep.

Our parallel programming model is a natural development of the adaptive mesh data structure. Grids at

each level are distributed across the entire processor set in an attempt to balance the load as evenly as

possible. (Software support for this model is provided both by the BoxLib class library [20] and the hypre
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linear solver package [9].) Grids at different refinement levels are not active at the same time, so they are not

separated onto different processors. MPI-based communications are required between adjacent grids of the

same refinement level, and between grids on different levels that occupy the same part of the domain.

3. Radiation diffusion

Radiative transport is modeled using the diffusion approximation, which satisfies the following

equation:

oER
ot

¼ r � ckðERÞ
jR

rER

� �
þ jP 4rT 4

�
� cER

�
; ð1Þ

where ER is the radiation energy density and jP and jR are the Planck and Rosseland mean absorption
coefficients, respectively. The diffusion coefficient ckðERÞ=jR contains a nonlinear (ER-dependent) limiter as
described by Levermore and Pomraning [17], the details of which are not a concern here. Note only that

k6 1=3, where 1=3 is the value without limiting.
We have neglected terms relating to radiation pressure and to motion of the fluid in the Eulerian frame.

These effects may be included in future versions of the algorithm without major changes to the solution

procedure. The oER=ot term is retained because without it the radiation field can transport but cannot
contain energy. At high temperatures the energy content of the radiation field may be an important part of

the total energy in the system.

Fig. 2. Fine levels advance at smaller timesteps than coarse levels.

Fig. 1. A properly nested hierarchy of grids.
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The solution of (1) is the radiation energy density, defined as

ER ¼ 1
c

Z 1

0

Z 4p

Im dXdm: ð2Þ

This is the zeroth moment of the radiative intensity Im, integrated over all frequencies. We will also have use
for the first moment, the radiative flux vector

F ¼
Z 1

0

Z 4p

XIm dXdm: ð3Þ

The diffusion approximation assumes that Im is weakly dependent on angle and that therefore F can be

represented as

F ¼ � ckðERÞ
jR

rER: ð4Þ

This implies that ER is slowly varying. There is no implication, however, that the radiation field and the
fluid are locally coupled.

If they are coupled, so that a common temperature applies to both the fluid and the radiation, we can

replace rER with rð4rT 4=cÞ in (4), obtaining

F ¼ � 16rT
3

3jR
rT : ð5Þ

This is the radiation heat conduction approximation. We will not use this form of the equation directly, but

the rapid, diffusive transport of fluid energy by the radiation field has implications for the design of the
time-stepping scheme. In particular, it motivates the need for implicit coupling of the new-time radiation

field with the temperature. We also note—without going into the details—that the Rosseland mean coef-

ficient jR and the Planck mean jP are defined by different frequency averages appropriate to their differing
roles in this approximation.

At vacuum boundaries we use the Marshak boundary condition

n̂n � F ¼ c
2
ER � 2Finc; ð6Þ

where Finc is a specified incoming flux. This is a mixed boundary condition involving both ER and its normal
derivative. Dirichlet, Neumann and periodic boundary conditions on the radiation field are also supported.

4. Energy update

The radiation field cannot be considered in isolation, as it continually exchanges energy with the fluid

medium via the last two terms of (1). The fluid itself obeys the compressible Euler equations with corre-

sponding energy source terms. We use a second-order Godunov method to explicitly advance the density,

momentum, and energy of the fluid at each timestep. In addition, we maintain a multi-fluid representation

of the state in order to prevent numerical mixing of different materials. The effect of this modification is that
the volume fraction f a, density fraction f aqa, and total energy fraction f aqaEa for each fluid a become
additional advected quantities. For a description of the multi-fluid algorithm see [11] and [19].

We will start with the single-fluid form of the energy update, and for simplicity of notation will use this

form for many of the derivations that follow. Most of the effects of the multi-fluid representation on the

radiation algorithm are to require various sums and averages over the fluids in each cell, which must be

specified for completeness but add little to the exposition.
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The single-fluid energy equation with contributions from advection and radiant energy takes the form

o

ot
qEð Þ þ r � uqEð þ upÞ ¼ �jP 4rT 4

�
� cER

�
: ð7Þ

Since our concern is primarily with the radiation terms on the right hand side of this equation, we define

ðqEÞ� as the fluid energy density updated to time nþ 1 for the advection process, but not for radiation.
That is,

ðqEÞ� ¼ ðqEÞn � Dt r � uqEð½ þ upÞ
nþð1=2Þ
: ð8Þ

In each timestep this quantity is computed by the Godunov module before the radiation calculation takes

place.

In a single-grid code we could evaluate the radiation terms at time nþ ð1=2Þ in order to do a time-
centered update. For AMR this is not appropriate, since multilevel solves should be performed at integral

times for which both coarse and fine level data exist. The time-centered form of the radiation portion

should therefore be

� 1
2

jn
P 4rðT nÞ4
�h

� cEn
R

�
þ jnþ1

P 4rðT nþ1Þ4
�

� cEnþ1
R

�i
: ð9Þ

The time n quantities are known, so we are left with the problem of computing T nþ1 and Enþ1
R .

The following sections develop the radiation update process in detail. While we present this material in a

partially time-centered, second-order form, in practice we often run our code in a fully implicit, backwards-

Euler mode which is first-order in time. This is done for stability reasons, due to the stiffness of the radiation
equation and the fact that we often run strongly driven problems featuring sharp interfaces in material

properties. Our goal has been to preserve the ability to run a time-centered discretization in the low

temperature limit, analogous to the treatment of both thermal diffusion and radiation transport in [14].

5. Implicit radiation update

In some regions of the flow field the fluid and radiation temperatures may be tightly coupled. It is
therefore inappropriate to advance T and ER separately—instead, we need an implicit form of the update

which takes the coupling of these quantities into account where it exists.

Let us first define the integrated blackbody intensity B ¼ 4rT 4. The update for the fluid energy then takes
the form

ðqEÞnþ1 ¼ ðqEÞ� � Dt ð1



� hÞjn
P Bn
�

� cEn
R

�
þ hjnþ1

P Bnþ1�
� cEnþ1

R

��
; ð10Þ

where we can set h ¼ 1=2 for a time-centered update, or h ¼ 1 for backwards-Euler.
Time centering, with the goal of second-order accuracy in time, seems appropriate for the fluid state

updates so long as we can perform them without stability problems. In the radiation diffusion equation,
though, the time difference is small (stiff) compared to the other terms by a factor of 1=c. It therefore seems
advisable to difference this term in backwards-Euler fashion. The equation to be satisfied is

Enþ1
R � En

R

Dt
¼ r � ckðEnþ1

R Þ
jnþ1
R

rEnþ1
R

� �
þ jnþ1

P Bnþ1�
� cEnþ1

R

�
: ð11Þ

In the limit of large j, this formulation has the desirable property of forcing emission and absorption—
which are then both large—to balance each other. Their difference must be small enough to be comparable

to the other terms in the equation. When the oER=ot term is negligible the only remaining term is the flux, so
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the only possible solution is a quasi-steady balance among emission, absorption and flux at a single point in

time.

There is a problem, however. The quantities jPðB� cERÞ represent transfer of energy from the fluid to
the radiation field. If we include these in the fluid update in Crank–Nicolson form, but in the radiation

update in backwards-Euler form, the two will not balance and the system will not conserve energy. If we

difference both in Crank–Nicolson form, then the radiation update (11) becomes

1

2
vnþ1 þ 1

2
vn ¼ 0; ð12Þ

where v ¼ jPðB� cERÞ � r � F and the time derivative is omitted. This supports an oscillatory solution
vn ¼ að�1Þn. A numerical imbalance among emission, absorption and flux at time n is merely inverted,
rather than corrected, at time nþ 1. In the limit of large j we can have emission and absorption far out of
sync, a nonphysical situation.

The alternative we have chosen is to modify the fluid energy update to be of the form

ðqEÞnþ1 ¼ ðqEÞ� � Dt ð1



� hÞðr � Fn �r � Fnþ1Þ þ jnþ1
P Bnþ1�

� cEnþ1
R

��
: ð13Þ

Since the emission and absorption appear as in a backwards-Euler difference, and the flux terms do not affect

conservation on a uniform grid, the combined radiation and fluid energy update is conservative. On the other

hand, this form reduces to the true Crank–Nicolson form (10) when oER=ot is small. With the radiation
equation permanently in backwards-Euler form this is the only case in which we would expect to see second-

order accuracy. (The Crank–Nicolson discretization for diffusion is itself vulnerable to oscillations when Dt is
sufficiently large. These are not as serious, though, as the problemswewould expect from time-centering (11).)

6. Multi-fluid modifications, average coefficients

In the multi-fluid form of the algorithm, each cell may potentially be occupied by more than one ma-
terial. Each fluid a in a cell takes up a volume fraction f a, with

P
a f

a ¼ 1. Most quantities derived from the
fluid state, including q, T and jP, are derived separately for each fluid. The radiation energy density ER,
though, is given a single value over the entire cell. There is thus a separate update equation for each

material energy, but a single equation for the radiation:

ðf aqaEaÞnþ1 ¼ ðf aqaEaÞ� � Dt ð1


� hÞ f
aja;nþ1
P

jnþ1
P

ðr � Fn �r � Fnþ1Þ þ f aja;nþ1
P Ba;nþ1�

� cEnþ1
R

��
; ð14Þ

Enþ1
R � En

R

Dt
¼ r � ckðEnþ1

R Þ
jnþ1
R

rEnþ1
R

� �
þ
X

a

f aja;nþ1
P Ba;nþ1�

� cEnþ1
R

�
: ð15Þ

Note that summing the equations (14) over all fluids recovers the single-fluid form of the energy update
(13). The average Planck mean jP appearing in (14) is simply

P
a f

aja
P, and is chosen to make this sum come

out correctly.

The average Rosseland mean jR in the diffusion coefficient is not so trivial to define, however. We have
experimented with a number of different formulas with various motivations, and have achieved best results

with a mass-weighted arithmetic average as shown in Fig. 3.

There is another context in which we must average jR, not because of the multi-fluid representation but
because of the difference stencil for diffusion. The Rosseland mean appears in the diffusion coefficient,

which falls on cell edges rather than cell centers in the standard 5-point discretization. The need to average
values onto edges gives us an opportunity to address one of the awkward cases in the diffusion model—that
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of getting the correct flux at a sharp interface between optically thick and optically thin materials. In the

formula shown in Fig. 4 the value 4=ð3DxÞ is selected for this configuration, producing a reasonable ra-
diative flux ðrT 4Þ across an interface. Because it is not tied to the multi-fluid representation, this surface flux
formula applies even at interfaces—thermal waves, for example—where no material boundary is present.

7. Energy/radiation update loop

Solution of Eq. (15) requires several quantities not yet available, most importantly the integrated

blackbody intensity Ba;nþ1 ¼ 4rðT a;nþ1Þ4. We can estimate this based on a temperature T a from the partially

updated fluid energy ðf aqaEaÞ�, perhaps with some explicit guesswork about the expected effect of the
radiation field, but whatever we do the estimate will not match the updated energy to be obtained via

equation (14). In general we will have to obtain T a;nþ1 through an iterative process.

Linearization of B and other quantities about the temperature T a which is the current best estimate to

T a;nþ1 gives us an iteration in the form of a modified Newton�s method. For independent variables we use ER
and the fluid internal energies Qa ¼ f aqaea. (The kinetic portion of fqE is the same on both sides of (14) and
is not altered by the radiation module, so we can subtract it off and work with internal energies only.) Since

ðf aqaÞnþ1 is known, from each Qa we can find a current internal energy ea, and then obtain T , cv and other
physical quantities as functions of q and e from tabular physical data.

The coupled equations are written as dependent variables that should all be zero when the system is

converged:

Fa ¼ ðf aqaeaÞnþ1 � ðf aqaeaÞ� þ Dt ð1


� hÞ f
aja;nþ1
P

jnþ1
P

ðr � Fn �r � Fnþ1Þ þ f aja;nþ1
P Ba;nþ1�

� cEnþ1
R

��
;

ð16Þ

FR ¼ Enþ1
R � En

R � Dtr � ðDrEnþ1
R Þ � Dt

X
a

f aja
P Ba;nþ1�

� cEnþ1
R

�
: ð17Þ

Fig. 4. The difference stencil for diffusion uses coefficients averaged to edges. The value 4=ð3DxÞ gives a reasonable flux across an
interface where optically thick and optically thin materials meet.

Fig. 3. The Rosseland mean must be averaged over the various fluids in each cell.
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Partial derivatives of these dependent variables form the Jacobian matrix. We then have a linear system to

solve for updates to the radiation and fluid energies. Note that for each cell there are multiple fluid energies

Qa and multiple fluid energy equations represented by the Fa, one for each fluid:

oFa
oQa

oFa
oER

oFR
oQa

oFR
oER

" #
dQa

dER

� �
¼ �Fa

�FR

� �
: ð18Þ

A few simplifications are helpful when forming the partial derivatives in (18). While some quantities, such

as f a;nþ1 and ðf aqaÞnþ1, are truly fixed, several others depend on some or all of the independent variables.
We neglect the dependence of the diffusion coefficient both on fluid temperature (through jR) and on ra-
diation energy (through the flux limiter). We also ignore the dependence of the ð1� hÞ correction term on
temperature through jP. We do, however, include the temperature dependence of emission and absorption.
Dropping the nþ 1 superscripts, we have

oFa

oQa
¼ 1þ Dt

f aqaca
v

f aja
P

oBa

oT a


þ f aðBa � cERÞ

oja
P

oT a

�
; ð19Þ

oFa

oER
¼ Dt ð1


� hÞ f

aja
P

jP
r � ðDrÞ � f aja

Pc
�
; ð20Þ

oFR
oQa

¼ � Dt
f aqaca

v

f aja
P

oBa

oT a


þ f aðBa � cERÞ

oja
P

oT a

�
; ð21Þ

oFR
oER

¼ 1� Dtr � ðDrÞ þ DtjPc: ð22Þ

The upper-left block of the Jacobian matrix is diagonal—as a consequence of the simplifications given

above—and therefore trivial to invert. We can therefore solve the system by forming the Schur complement:

oFa
oQa

oFa
oER

0 oFR
oER

� oFR
oQa

oFa
oQa

� ��1
oFa
oER

2
4

3
5 dQa

dER

� �
¼

�Fa

�FR þ oFR
oQa

oFa
oQa

� ��1
Fa

" #
: ð23Þ

The quantities

ga ¼ � oFR
oQa

oFa

oQa

� ��1

ð24Þ

appearing on both sides of this system are local to each cell, so the equation for dER is still a diffusion
equation. It is no more difficult to solve than (15) would be if the fluid temperatures were known in ad-

vance. The Newton iteration thus requires one call to the implicit diffusion solver per iteration.

We normally iterate to convergence, using a criterion based on the pointwise fluid energy changeP
a jdf aqaeaj. Quantities such as the j�s and the flux limiter may be updated at each iteration even if they are

not included in the linearization (19)–(22). These updates are optional in our implementation, because

though they may improve the quality of the solution, they often make the iteration converge more slowly,

and because repeated calls to the data tables may be expensive. We stress that the scheme is designed to

conserve energy whether these quantities are updated or lagged, and whether or not the nonlinear system

itself is iterated to convergence. Conservation depends only on the accurate solution of the diffusion

equation at the final step of the iteration.
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If we wanted to make the linearization more complete, probably the most important term to add would

be temperature dependence of the diffusion coefficient through jR. The presence of this term inside the

divergence operator would greatly complicate the linear system to be solved at each iteration, however.

Linearizing the dependence of the limiter on ER would lead to similar complications. Probably the easiest
term to add would be the jP dependence in the ð1� hÞ correction term. Even this would couple the different
fluids within each cell, though, and thus make oFa=oQa harder to invert. It probably wouldn�t be worth the
trouble to do this since the term is only nonzero in cells with more than one fluid present.

8. Stability of the update

There are two separate questions we may ask about the update iteration: ‘‘Does the iteration itself

converge?’’ and ‘‘Given convergence at each timestep, what behavior do we expect over multiple time-

steps?’’ To address the first, we note that since the iteration is essentially Newton�s method, we can expect
the usual behavior of Newton iterations. The method should converge rapidly near the solution if the

Jacobian approximation is reasonable, but may perform poorly if the terms we have omitted are important.
If started far from the solution, in the sense that nonlinearities become dominant, the method may diverge.

This suggests a timestep limitation based on a maximum permissible change in temperature.

Most of the complexity of the linearization (19)–(22) involves the transfer of energy between the fluid

components and the radiation. To simplify the analysis of the algorithm, we first consider only the total

energy in each cell. Letting FR ¼
P

a Fa, we haveX
a

oFR

oQa

�
þ oFR
oQa

�
dQa þ

oFR

oER

�
þ oFR
oER

�
dER ¼ �FR � FR: ð25Þ

The simplification then results from the facts that oFR=oQa þ oFR=oQa ¼ 1, and that the emission and
absorption terms on the right hand side also cancel.

To write the update (25) out in full, we need to make clearer the iterative nature of the scheme. We are

updating quantities to time nþ 1. Let us use a * superscript to indicate the previous estimates to those
quantities. We will then have Enþ1

R ¼ E�
R þ dER and so on. We iterate the process by substituting these new

nþ 1 estimates in place of the older * quantities and computing the update again.
The total energy update can then be written asX

a

dQa þ dER � hDtr � ðD�rdERÞ ¼ �
X

a

Q�
a þ

X
a

Q�
a � E�

R þ En
R

þ Dt ð1
�

� hÞr � ðDnrEn
RÞ þ hr � ðD�rE�

RÞ
�
; ð26Þ

which simplifies toX
a

Qnþ1
a þ Enþ1

R ¼
X

a

Q�
a þ En

R þ Dt ð1
�

� hÞr � ðDnrEn
RÞ þ hr � ðD�rEnþ1

R Þ
�
: ð27Þ

Eq. (27) closely resembles a standard diffusion update evaluated at time nþ h, with the nonlinear diffusion
coefficient represented by D�. This is even clearer in limits where separate energies are not important—either

the low-temperature limit where ER  Qa, or the close-coupling limit where the fluid and radiation tem-

peratures are equal. The latter case can be written as a simple Crank–Nicolson update for radiation heat

conduction:

qnþ1cv
T nþ1 � T�

Dt
¼ ð1� hÞr � 16rðT nÞ3

3jn
R

rT n

 !
þ hr � 16rðT �Þ3

3j�
R

rT nþ1

 !
; ð28Þ
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where cv may include separate fluid and radiation contributions. The usual stability considerations for a
Crank–Nicolson update then apply. When the timestep is too large this discretization (with h ¼ 1=2) can be
vulnerable to oscillations, but these can be avoided (with some loss of accuracy) by running the scheme in

backwards-Euler mode (h ¼ 1).
The behavior of the total energy seems reasonable, but what can we say about the fluid and ra-

diation separately, with the strongly nonlinear coupling between them? If we take the radiation update

by itself (the second row of (23)), collapse the separate fluids into one, and write it as an equation for

Enþ1
R , we obtain

Enþ1
R þ Dtð1� g�Þj�

PcE
nþ1
R � Dt½1� ð1� hÞg�
r � ðD�rEnþ1

R Þ
¼ En

R þ Dtð1� g�Þj�
PB

� � g�ðQ� � Q�Þ þ Dtð1� hÞg�r � ðDnrEn
RÞ: ð29Þ

There are two cases to consider. Normally, increasing fluid temperature increases the transfer of energy

from the fluid to the radiation field. In this case the linearization parameter g� is positive, varying from 0 for

small Dt up to 1 for large Dt. Equation (29) is then a well-behaved diffusion equation. The linear system for
Enþ1
R is symmetric, positive definite, diagonally dominant, and solvable by standard software packages. The

effect of the linearization on this linear system is simply to damp the absorption term. In the limit of large Dt
equation (29) reduces to

�hr � ðD�rEnþ1
R Þ ¼ ð1� hÞr � ðDnrEn

RÞ: ð30Þ

Barring nonlinear effects of D�, this is stable for h ¼ 1 and vulnerable to oscillations for h ¼ 1=2, as we
would expect.
More troubling is the unusual case of positive feedback, where increasing fluid temperature increases

absorption more than emission. The parameter g� can then be negative, and the system is stable only for

small Dt. With increasing timestep g� becomes singular. The simplest course of action is to inhibit linear-

ization and arbitrarily set g� to zero when this inverted condition is detected.

9. Single-grid tests

Before describing the adaptive mesh refinement algorithm, we present two numerical examples to il-

lustrate features of the discretization. Both are pure radiation problems with no hydrodynamics. The

purpose of both is to show how the method handles sharp interfaces between regions with differing material

properties.

The first test is an idealized problem showing the effect of the surface flux formula (Fig. 4) for averaging

jR onto cell edges. The domain is the unit square with insulating boundary conditions. This region is di-
vided into two different materials, one optically thick (jP ¼ jR ¼ 106) and one optically thin (jP ¼ 0,
jR ¼ 10�4). The thick material forms a quarter-circle with radius 0.5, centered at one corner of the domain.
Cells along the interface between the two fluids are multi-fluid cells with appropriate volume fractions. We

set uniform conditions q ¼ 1, cv ¼ 1, e ¼ T ¼ 100, ER ¼ 0 at time 0, the same for both materials. For
constants we use r ¼ 2:5� 10�9, c ¼ 106.
When the system comes to equilibrium we should have ER ¼ ð4rT 4Þ=c ¼ 10�6 throughout the domain.

The thick region reaches this value very rapidly. With an initial oER=ot ¼ 4jPrT 4 ¼ 106 it is approaching
equilibrium by time 10�12. The thin region, on the other hand, is dependent on radiation emitted at a rate of

rT 4 ¼ 0:25 from an interface of length p=4. With an area of 1� p=16 to fill, the radiation in the thin
material is not approaching its final value until time 4� 10�6.
We run the simulation until time 10�7. At this point the total radiation energy should be approximately

2:160� 10�7 (that is, ðp=16Þ � 10�6 in the thick region plus ðp=16Þ � 10�7 in the thin region). We compare
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results using three different ways of computing jR at edges for use in the diffusion coefficient: an arithmetic
average, a harmonic average, and the surface formula, all without the flux limiter, and then the latter two

again with the flux limiter [17] turned on.

The limiter is important to consider because t ¼ 10�7 is only a tenth of the light travel time across the
domain. In a sense the surface formula and the limiter are trying to produce the same thing: a physically

reasonable flux into and through a transparent medium. We should therefore be concerned whether the two

will interfere with each other and possibly limit the flux too much.

To test the effects of resolution, we run the problem on two different meshes (64� 64 and 128� 128) and
with two different timesteps. With Dt ¼ 10�7 the code takes a single step, while 10 are required for
Dt ¼ 10�8. Backward-Euler differencing is used, and the limiter is iterated to convergence based on new-
time ER. Results are summarized in Table 1.
The energies computed using the arithmetic average correspond closely to the total area of cells (full

and mixed) containing some of the thick material. Almost no radiation makes it into the thin region.

The values for the harmonic average without the flux limiter, on the other hand, are near the final

equilibrium value for the problem. These two methods drastically under- and over-estimate the flux out

of the thick region, respectively. Even with the limiter the harmonic average gives too much flux across
the thick–thin interface, but the limiter is partially successful at keeping the radiation from streaming

instantly across the domain. The good results are the ones using the surface formula. Far from in-

terfering with each other, the limiter and surface formula together give better performance than any

other option tried.

This calculation seems to depend very little on the timestep. Spatial resolution has a much greater im-

pact, probably due to discretization effects at the interface itself. The interface cells are the only ones with

significant coupling to the radiation field in the thin region.

The arithmetic average of jR over the fluids within each mixed cell (Fig. 3) is also important to
the result. We do not want to lengthen this section with more numerical comparisons, but other

averaging schemes we tried gave too much weight to the optically thin components, allowing the

mixed cells to couple strongly to the thin region and thus overestimating the flux. It is interesting that

the approach that gives the best results for averaging within each cell is the one that gives the worst

behavior for averaging onto edges. The arithmetic fluid average causes mixed cells to be associated

with the thick region, then the edge average controls the coupling between this region and the rest of

the domain.

The very short time scale of the preceeding example shows the surface flux formula at its best advantage.
The result is correct, but perhaps misleading. We now examine a model problem which develops over a

longer time, with temperature-dependent coefficients, where a radiation front burns through a layer of

optically thick material.

Table 1

Integrated radiant energy for surface flux test problem (all values �10�7)

Mesh 64� 64 128� 128

Timestep 10�7 10�8 10�7 10�8

Arithmetic average 2.029 2.029 1.997 1.997

Harmonic average 9.980 10.000 9.968 10.000

Harmonic with limiter 2.854 2.852 2.779 2.801

Surface formula 2.270 2.274 2.237 2.241

Surface with limiter 2.205 2.207 2.167 2.167

The correct value is near 2.160.

L.H. Howell, J.A. Greenough / Journal of Computational Physics 184 (2003) 53–78 63



The problem is one-dimensional, with three material regions and no hydrodynamics. In all three regions

we have a constant cv ¼ 108, an initially constant T ¼ 104, variable absorption coefficients

jP ¼ jR ¼ Kq2T�1, and no initial radiation field. The material-dependent properties are as follows:

Region q K

0:000 < x < 0:005 1 106

0:005 < x < 0:015 10 1010

0:015 < x < 0:020 1 104

Physical constants have the values c ¼ 3� 1010 and r ¼ 5:6697� 10�5. We drive the problem by applying a
Dirichlet boundary condition on the radiation energy density at x ¼ 0:02 corresponding to a temperature of
3� 106. There is no radiation flux at the other boundary (x ¼ 0). The radiation flux limiter is not used.
Fig. 5 shows the evolution of the temperature field at time intervals of 2� 10�6, computed with

Dx ¼ 0:0002 and Dt ¼ 10�8. The thick central material has an optical depth of 106 (20000 per cell) when
cold, dropping to 3333 (67 per cell) when hot. A sharp front develops until the radiation has burned all the

way through this thick material. The purpose of the test is to see which parameters and features of the

algorithm are most important to the accuracy of the simulation. Plotting all of the comparisons would

consume too much space, but a summary of the results should suffice.

First, the results do not depend strongly on spatial resolution. The example shown, with 50 cells through

the thick material, is well-resolved. Finer meshes reproduce the same profiles. If we coarsen the mesh so that
only 20 cells are in the thick material, the front moves slightly faster due to imperfect resolution of the steep

gradient region. With 10 thick cells the front has begun to break through the interface at x ¼ 0:005 by time
6� 10�6 (corresponding to the middle curve of the figure). The important point is that it is not necessary to
resolve an optical depth in any of the materials. It is only necessary to resolve the actual profiles observed in

the simulation.

Timestepping is a more critical issue, though not so much the size of the timestep as the details of

the timestepping algorithm. The simulation shown in the figure iterated each implicit update to conver-

gence, updating jP and jR to the new fluid temperature for every iteration. For this mode of opera-
tion using Dt ¼ 10�8 was severe overkill. A timestep of 10�7 gives almost identical results, and even Dt ¼

Fig. 5. Thermal wave moving through a layer of optically thick material (from the right): temperature profiles are shown for times

2� 10�6, 4� 10�6, 6� 10�6, 8� 10�6, 1� 10�5.
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10�6 (2 timesteps per curve in the figure) only distorts the results by a few percent. If, on the other hand, we

iterate the rT 4 factor to convergence but do not update jP and jR, we need timesteps 10� smaller to

achieve a similar level of accuracy. Runs which did not iterate to convergence, but only performed one

implicit update iteration per timestep, did not give stable results when Dt was much over 10�10. All of these
results were in backward-Euler (h ¼ 1) mode. Centered-difference timestepping did not work for any
reasonable timestep due to oscillations at the right (Dirichlet) boundary.

The difference in results between a harmonic average onto edges for jR and the surface formula (Fig. 4)
were very minor. There are at least two ways to explain this. One is to observe that the temperature curve
through the thick material adjusts itself to give a balanced flux, becoming steeper in colder, more opaque

material. The interface at x ¼ 0:015, the only point where the surface formula applies, is not a bottleneck.
The other explanation is that the light travel time, and the time taken to heat the first thick cell, are both

much shorter than the timescale of the problem. Examination of early time behavior shows that the surface

formula makes a large difference up to time 10�10. Also, because it helps limit the temperature change in the

interface cells, it makes the nonlinear update loop more robust during the first few timesteps.

An arithmetic mean for the average onto edges gave significantly worse performance. It slowed the

progress of the front through the thick material, and this effect was more serious on coarser grids. While we
recommend the surface formula, if the choice must be made between an arithmetic and a harmonic mean

then the harmonic is definitely better.

Additional support for the importance of converging the nonlinearities, and its connection with time step

stability issues is presented in [15,16,21].

10. AMR time step

Up to this point we have been discussing operations confined to a single level of refinement. In the AMR

timestepping scheme each level advances at its own local timestep, obtaining boundary data from the next

coarser level or from the physical boundary as appropriate. The pattern of rectangular grids within a level

should make no difference to the computed solution, since a different division of a refined region into

patches does not alter the discretization.

The real issue comes at the end of a coarse timestep, when coarse and fine levels have advanced to

equivalent points in time. Fluxes across the coarse–fine interface have been computed separately by the two

levels and therefore do not match exactly. In the explicit advection scheme this mismatch can be remedied
by a local update to the coarse cells adjacent to the interface. In the parabolic radiation update, however,

information from a localized region can potentially affect the entire domain, so an additional call to the

linear solver is required.

Unlike the equations solved in advancing a level, the synchronization operation directly impacts at least

two levels simultaneously. We therefore need a multilevel solver which computes a solution on two or more

levels at a time, in the style of [2] or [18]. Fortunately, though, the corrections are generally small, so we

require only a single linear solution, not an iterative nonlinear solution as we do for the level advance

operations. An extensive discussion of multilevel synchronization for elliptic and parabolic effects is pre-
sented in [1] in the context of incompressible fluid flow.

The form of synchronization required for radiative energy conservation in an AMR time step is similar

to that developed in [14] for an AMR discrete ordinates code, with the added complication that in the

present algorithm the radiation field stores energy and is not merely a transport mechanism. The algorithm

in [14] also included correction terms designed to improve the accuracy of the coarse grid solution by

anticipating the effects of the finer levels. These corrections appear in the algorithm below as the ‘‘multilevel

init option’’. This option is only needed when finer levels have an immediate, global effect on the radiation

field in the coarse region of the mesh. Since it costs an additional call to the multilevel solver per coarse
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timestep, we usually do not use it. Implications of the multilevel init option are discussed for the first

numerical test problem in the next section.

The AMR time step is defined recursively in terms of operations on a level l and its interactions with
coarser and finer levels. We are advancing level l from time index n to nþ 1, corresponding to time values
told;l and tnew;l, respectively. (Even though levels other than l have executed different numbers of timesteps,
we will use the nþ 1 superscript to refer to values at time tnew;l on all levels involved in the calculation.) The
region covered by level l is denoted Kl, its border is oKl, and the border of the next finer level, projected

onto level l, is PðoKlþ1Þ.
The notation to describe all of this is unavoidably complex due to the quantities at different times, levels,

and stages of the update process. In the following outline, we attempt to specify the update for the level l and
its synchronization with finer levels. We use a check (e.g., �EER) to denote new-time values resulting from the
level l implicit update, prior to the sync solve, and for the current values on levels lþ 1 and higher. (These
higher-level values will include the effects of higher-level sync solves already completed.) Bar values (e.g., �FF)
are time averages over the level l step. A tilde (e.g., ~EER) is for the corrections resulting from the sync solve
between levels l and lþ 1, and a hat (e.g., ÊER) is for corrections deriving from the multilevel init option.
Note that while r � F is needed everywhere, the flux F itself is only stored on the borders between levels.

Our code has data structures called flux registers designed for this purpose. The notation h�i indicates an
average in space over the fine cells (or cell faces) making up each corresponding coarse cell (or face), while

hh�ii denotes an average in both space and time over the coarse (level l) time step. Thus, at the only point in
the algorithm where this notation is used,

hh�FFlþ1ii ¼ 1

rlþ1
Xrlþ1ðnþ1Þ�1

m¼rlþ1n

h�FFlþ1;mþhi; ð31Þ

where the sum is over the rlþ1 level lþ 1 timesteps making up the level l timestep from n to nþ 1.
The function DR appearing as a source term in each of the diffusion equations is called the reflux di-

vergence, because it takes the form of the divergence of a flux difference dF stored in the flux registers. This

term is evaluated only in the coarse cells bordering an interface with a finer level. It does not affect fine cells

at the interface because their flux calculations are already correct; the DR term represents the corrected

fluxes from these fine cells being imposed onto the coarse grid.
Another way to understand the DR term in the synchronization step is to consider dF to be energy that

has been ‘‘misplaced’’ at the coarse–fine interface during the level time steps, due to the differing flux

calculations on the different levels. If the solution were not corrected, this energy would be lost and the

system would not be conservative. Instead, the DR term re-introduces the missing energy into the system as
a radiation source in the coarse cells next to the interface.

We present all of this material in single-fluid form, as the multi-fluid discretization has no impact on the

adaptive mesh algorithm. The values of ER and qE at the end of the synchronization process are the
corrected new-time data, on all affected levels, for the end of the level l timestep. It is still possible for these
values to change if there are any sync solves pending for levels l� 1 and below. With this one major ex-
ception, we have attempted to write this algorithm without updates or reassignments—each quantity at each

point is assigned only once. (The other exceptions to this rule are trivial. Some fluxes are multiply assigned

at domain boundaries, for example, but these values are never used since refluxing does not happen at

domain boundaries.)

If ðl < lmaxÞ and (regrid requested for timestep n) then

For l0 2 flmax � 1; . . . ; lg do

� Determine new grid layout for level l0 þ 1.
� Interpolate data to new grids from level l0.
� Copy data on intersection with old level l0 þ 1 grids.
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Enddo

Endif

If ðl < lmaxÞ or ðtold;l ¼ told;l�1Þ then

� Store Fl;n in flux registers on oKl and PðoKlþ1Þ, compute r � Fl;n on Kl.

Endif

If ðl < lmaxÞ and ðtold;l 6¼ told;l�1Þ and (multilevel init option) then

For l0 2 flmax; . . . ; lg do
I oER=otð Þl

0 ;est ¼ �r � Fl0 ;n þ jl0;n
P Bl0 ;n � cEl0;n

R

� �
on Kl0 � PðKl0þ1Þ

I oER=otð Þl
0;est ¼ h oER=otð Þl

0þ1;esti on PðKl0þ1Þ, l0 < lmax
Enddo

Multilevel Solve: l0 2 fl; . . . ; lmaxg (ÊEl0 ;n
R and F̂Fl0;n are computed)

I
oER
ot

� �l0;est ¼ r � ckðEl0 ;n
R

Þ
jl

0 ;n
R

rÊEl0 ;n
R

� �

þ jl0;n
P Bl0 ;n � cÊEl0 ;n

R

� �
� DRðdF̂Fl0þ1;nÞ on Kl0

I dF̂Fl0þ1;n ¼ hF̂Fl0þ1;ni � F̂Fl0 ;n on PðoKl0þ1Þ, l0 < lmax
I dÊEl0þ1;n

R ¼ hÊEl0þ1;n
R i � ÊEl0 ;n

R on PðKl0þ1Þ, l0 < lmax
I dÊEl0þ1;n

R ¼ 0 on Kl0 � PðKl0þ1Þ
End Multilevel Solve

Else If (not using multilevel init option)

For l0 2 fl; . . . ; lmaxg do

I dF̂Fl0þ1;n ¼ 0 on PðoKl0þ1Þ, l0 < lmax
I dÊEl0þ1;n

R ¼ 0 on Kl0

Enddo

Endif

Level Time Step, level l:
Multi-Fluid Advection (not described here)

Implicit Energy Update (‘‘check’’ quantities are computed)

I
�EEl;nþ1
R

�El;n
R

Dtl ¼ r � ckð �EEl;nþ1
R

Þ
�jjl;nþ1
R

r �EEl;nþ1
R

� �

þ �jjl;nþ1
P

�BBl;nþ1 � c �EEl;nþ1
R

� �
� DRðdF̂Flþ1;nÞ

I ðq �EEÞl;nþ1 ¼ ðqEÞl;� � Dtl ð1� hÞ r � Fl;n �r � �FFl;nþ1� �

þ �jjl;nþ1

P
�BBl;nþ1 � c �EEl;nþ1

R � cdÊElþ1;n
R

� ��
End Implicit Energy Update

� �FFl;nþh ¼ ð1� hÞFl;n þ h�FFl;nþ1 on PðoKlþ1Þ, l < lmax
� Advance levels lþ 1; . . . ; lmax, including higher-level sync solves.
� d�FFlþ1;nþh ¼ hh�FFlþ1ii � �FFl;nþh � dF̂Flþ1;n on PðoKlþ1Þ, l < lmax
� �FFl;nþh ¼ ð1� hÞFl;n þ h�FFl;nþ1 on PðoKlÞ, l ¼ lmax

End Level Time Step

If ðl < lmaxÞ then (synchronization/refluxing between levels l and lþ 1)
Multilevel Solve: l0 2 fl; . . . ; lmaxg ( ~EEl0 ;nþ1

R and ~FFl0;nþ1 are computed)

I
~EEl0 ;nþ1
R

Dtl ¼ r � ckð �EEl0 ;nþ1
R

Þ
�jjl
0 ;nþ1
R

r ~EEl0 ;nþ1
R

� �
� �jjl0;nþ1

P c ~EEl0 ;nþ1
R � DRðd�FFlþ1;nþhÞ on Kl0 � PðKl0þ1Þ

I ~FFl0 ;nþ1 ¼ h~FFl0þ1;nþ1i on PðoKl0þ1Þ, l0 < lmax
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End Multilevel Solve

For l0 2 flmax; . . . ; lg do

I ðqEÞl
0 ;nþ1 ¼ ðq �EEÞl

0 ;nþ1 þ Dtl�jjl0 ;nþ1
P c ~EEl0;nþ1

R on Kl0 � PðKl0þ1Þ
I El0 ;nþ1

R ¼ �EEl0;nþ1
R þ ~EEl0 ;nþ1

R on Kl0 � PðKl0þ1Þ
I ðqEÞl

0 ;nþ1 ¼ hðqEÞl
0þ1;nþ1i on PðKl0þ1Þ, l0 < lmax

I El0 ;nþ1
R ¼ hEl0þ1;nþ1

R i on PðKl0þ1Þ, l0 < lmax
Enddo

� �FFl;nþh ¼ ð1� hÞFl;n þ h�FFl;nþ1 þ ~FFl;nþ1 on PðoKlÞ, l > 0
Endif (end synchronization/refluxing)

The final line of this algorithm includes a correction to the flux registers on PðoKlÞ due to the l; lþ 1 sync,
in preparation for the synchronization between levels l� 1 and l. (In case the order of flux register op-
erations is unclear, note that �FFl is set for the coarse level during its level time step, just before the finer levels

are advanced. Finer level �FFlþ1 values are then set either at the end of the lþ 1 level time step (if
lþ 1 ¼ lmax), or at the end of the following synchronization block (if lþ 1 < lmax). Once execution returns
to the coarse level, coarse and fine values of �FF are combined to form d�FFlþ1.)

As written above, the sync solve is a backwards-Euler discretization of the radiation diffusion equation

for the correction ~EER over a level l timestep. We solve for this correction on levels l to lmax simultaneously,
in a coupled fashion, and then apply it to the existing radiation and fluid energy fields. In many cases

computational effort can be saved by performing the multilevel linear solve over a restricted set of levels—

perhaps only l and lþ 1—and then interpolating the corrections to higher levels in a conservative fashion.
In our present implementation we have found it beneficial to use a more coupled formulation for the

sync solve, with emission and absorption linearized about the change in fluid energy in much the same way

as we did for the implicit update. This version alters the values passed to the multilevel linear solver, but no

additional calls to the solver are required since we do not attempt to iterate the nonlinear effects to con-

vergence. Without this linearization some runs showed irregularities in the fluid energy at the interfaces

between levels. This feature is not difficult to implement, but is omitted from the outline given above to

avoid complicating the notation any further.

11. Adaptive mesh results

We will now present three test problems to illustrate different characteristics of the AMR radiation

algorithm. The first example is a pure radiation problem designed to explore the limitations of the method

when important features are not resolved on coarser mesh levels. The second is a thermal wave calculation

showing the code executing in parallel with a large 3D mesh. This example is also used to show the effect of

the coarse/fine synchronization step, and to demonstrate that the adaptive mesh does not introduce sig-
nificant grid artifacts into the solution. The final example is a physics simulation using realistic tabulated

material data.

Even though we will present tables of numerical results, the examples are intended to be more illustrative

than quantitative—we show that the solutions are not marred by serious grid effects, and that the method is

practical for large-scale computations. We will say little about efficiency, and essentially nothing about

parallel scalability. There are two main reasons for this: First, efficiency and scalability depend to a large

degree on the underlying libraries. More than half of our time is spent in the hypre linear solvers. Speed

these up, or substitute a different solver library, and the results are changed. Calls to physical data tables are
also an important expense. Much of the remaining time is spent doing Godunov hydrodynamics, which is

local, explicit, and therefore scales well in parallel, but is not the primary focus of this paper.
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Second, the efficiency of AMR calculations depends strongly on the grid layout. This is true in serial as

well as in parallel calculations. A refined region covering a major portion of the domain may be less efficient

than one covering all of the domain, due to AMR overhead issues. Small grids have poor surface-to-volume

ratios and therefore increase overhead. Large grids, on the other hand, can suffer from problems related to

memory size and cache efficiency. Optimal parameters are architecture-dependent, and also influenced by

the particular details of each application.

Our first test is a pure radiation problem, shown in Fig. 6. This example is not presented as a typical

application of the method, rather it has been chosen to show how the AMR timestepping scheme loses
accuracy when features critical to the global solution are not resolved on the coarse mesh. This gives insight

into the AMR algorithm itself, and also provides motivation for the discussion of material interfaces

presented earlier in the paper. In the single-grid examples we showed that fluxes across sharp interfaces

could be computed accurately without a strong dependence on spatial or temporal resolution. Without that

capability, such problems would become more difficult to solve with an AMR algorithm due to inadequate

coarse grid solutions—perhaps as difficult as the example we are presenting now:

The problem is motivated by an idea of sunlight reaching the ground through gaps in a layer of cloud,

but we make little attempt to establish realistic parameters for the physical system. The domain is a square
in 2D Cartesian coordinates, 105 cm on a side. The coefficient jP is zero, decoupling the radiation field from
the fluid energy, and all other parameters relating to the fluid are therefore irrelevant. The coefficient jR is
10�2 cm�1 within ‘‘clouds’’, and 10�6 cm�1 elsewhere. The clouds form a horizontal layer across the middle

of the square. Each cloud is circular, gaps between the clouds are 1=10 of a cloud diameter, and there are
8.5 clouds across the width of the domain. The top of the domain has a Marshak boundary condition with

an imposed incident flux of 4� 105 erg/cm2/s, the bottom is a Marshak boundary with zero imposed flux,

and the sides are reflecting (Neumann) boundaries. The speed of light c is 3� 1010 cm/s. The timestep
centering parameter h is set to 1—this parameter primarily affects the coupling between radiation and the
fluid, and is therefore not relevant for this problem.

Fig. 6. Contour plot of radiation energy density for the first AMR test problem. Radiation enters the domain at the top and must

pass through a row of circular ‘‘clouds’’ across the center of the domain before reaching the bottom. This particular example is a

steady-state solution computed, with no flux limiter, on a 32� 32 base grid with two levels of refinement around the cloud layer
(the resolution labled ‘‘32,128,512’’ in Table 2). Fine grid boundaries are visible as thicker lines in the plot.
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So much for the litany of parameters. Speaking more heuristically, what happens is that a flux of 400,000

units enters at the top of the domain and interacts with the clouds in the middle. If the material were

transparent, all of the energy would reach the bottom and the average outward flux there would be 400,000.

If the clouds were opaque, all of the energy would reflect back out the top, and the outward flux at the

bottom would be zero. We place finer grids around the cloud layer only, since the solution is smooth in the

other parts of the domain. Fig. 6 shows a steady-state solution with a 32� 32 base grid and two levels of
refinement, each by a factor of 4.

The narrow gaps between the clouds are what make this an interesting and difficult problem for AMR.
On coarse grids the gaps are not resolved, and very little energy makes it through the cloud layer. On fine

grids, where the gaps are well-resolved, the flux may actually be overestimated unless a flux limiter is used.

The higher-resolution, non-limited fluxes given in Table 2 are over 350,000, too high to be physically re-

alistic. Use of the flux limiter brings this down to the neighborhood of 100,000—probably still too high but

nearer the right ballpark. A physically accurate answer may be more than we can realistically ask of a

diffusion approximation. Fortunately, though, physical reality is not the immediate concern for this test

problem. What we want to know is how AMR performs when important features are not resolved on the

coarse grids. We can explore this question even with the physically unrealistic, non-limited solution. Since
the limiter complicates the study, all of the following results except those in the last column of Table 2 were

obtained with the limiter turned off.

The system as described so far has no time dependence, so we initialize all cases with a steady-state

solution obtained using the multilevel linear solver. In each of the cases tested, this multilevel solution gives

a close match to the fluxes computed with a uniform grid covering the entire domain at the same resolution

as the finest level. The hard part of the calculation is the time stepping. The AMR timestep algorithm first

advances the coarse level, then advances the finer levels using boundary data (interpolated in space and

time) from the coarser levels ([1] gives a detailed exposition of the boundary treatment). In the current
example, though, the coarse grid solution is wildly inaccurate, even in parts of the domain outside the fine

grids. The sync step brings the new-time fluxes (third column of Table 2) up to the right order of magnitude,

but does not restore the accuracy of the true multilevel solution.

Table 2

Spatially averaged flux across the lower boundary of the problem of Fig. 6 at time t ¼ 1, with a constant incident flux imposed at the
top boundary

Resolutions Total cells Standard init option Multilevel init option Limiter

Advanced Flux Time Flux Time Flux

32 1024 12,709 0.183 12,709 0.167 12,632

64 8192 15,636 0.867 15,636 0.867 15,133

128 65,536 320,550 5.917 320,550 5.900 65,223

32,128 21,504 222,617 4.167 320,996 3.083 65,233

256 524,288 353,040 49.00 353,040 48.17 91,371

64,256 122,880 276,431 17.30 353,314 15.73 91,380

512 4,194,304 356,853 490.2 356,853 489.7 110,309

128,512 720,896 347,588 112.9 356,993 114.4 110,316

32,128,512 676,864 207,106 114.1 357,556 110.1 110,341

256,1024 4,980,736 356,834 858.3 358,424 958.0

64,256,1024 4,579,328 273,660 857.1 358,706 831.8

Timesteps on each level are in proportion to the spatial mesh size, with a 32� 32 grid taking a single timestep. Timings are in
seconds on a single Compaq Alpha EV5.6 processor. The flux limiter is used only for the last column of tests.

Resolutions are specified by the numbers of cells required to span the domain, so that, for example ‘‘64,256’’ refers to a 64� 64 base
grid and one level of refinement by a factor of 4.
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Significant improvement is obtained by using the multilevel init option to the AMR timestep algorithm.

This version stores flux corrections (dF̂F) that are applied during the coarse level advance to approximate the

effects of the finer levels. The cost is an additional multilevel solver call at the beginning of each coarse

timestep. Since the test problem is constant in time the corrected solution recovers the accuracy of the

steady-state multilevel solve (column five of Table 2). The sync is nearly eliminated, so the timings (column

six) are similar to those for the standard init option (column four).

The final column of Table 2 gives fluxes computed with the flux limiter turned on. This makes the

problem nonlinear, so the initial steady-state solution requires repeated calls to the multilevel solver until
the limiter is converged. This is a very slow process, and requires considerably more time than the time

stepping algorithm that we have been examining. For this reason we do not report timings for this case, and

did not complete the runs with the finest grid resolutions. We can report, however, that once the initiali-

zation phase is complete the times required for these runs are very similar to those needed without the

limiter. Also note that since the multilevel init option is used for these runs, the computed fluxes depend

almost entirely on the finest grid resolution. (It is only the problem initialization that is expensive, not the

multilevel init option itself, since that does not involve a nonlinear iteration.)

While it is reassuring that the multilevel init option can recover the accuracy of a steady-state solution,
what we really care about are time-dependent solutions. For Table 3 we have replaced the constant incident

flux across the top boundary with a time-varying flux of ðt2 þ t þ 2Þ� 100,000 units. Note that this
boundary condition is applied to the coarse part of the mesh; fine grids are not exposed to it directly. The

multilevel init option still improves the solutions, but its flux estimates are no longer correct for the new

time level. Solutions obtained with base grids that do not resolve the gaps between clouds (32� 32 and
64� 64) are poor. Even with a very coarse base grid, though, the lower portion of the table shows that
computed fluxes converge to first order in Dt.
We stress that this test case was chosen to stress the AMR algorithm to its limits. The degraded accuracy

at some resolutions is due to the instantaneous and time-varying dependence of the coarse grid solution on

the resolution at finer grid levels. Most problems do not exhibit this behavior to such an extreme degree.

When the multilevel init option is used, acceptable performance can be obtained either when the coarse

Table 3

Spatially averaged flux across the lower boundary of the problem of Fig. 6 at time t ¼ 1, with temporally varying incident flux imposed
at the top boundary

Resolutions Coarse steps Fine steps Cells advanced Flux Time

32 1 1 1024 12,708 0.167

64 2 2 8192 15,636 0.717

128 4 4 65,536 320,549 5.917

32,128 1 4 21,504 262,805 3.967

256 8 8 524,288 353,039 50.02

64,256 2 8 122,880 321,923 19.53

512 16 16 4,194,304 356,852 492.0

128,512 4 16 720,896 354,359 134.2

32,128,512 1 16 676,864 278,873 138.1

256,1024 8 32 4,980,736 357,859 1117.0

64,256,1024 2 32 4,579,328 322,334 1050.0

32,128,512 1 16 676,864 278,873 138.1

32,128,512 2 32 1,353,728 320,895 274.4

32,128,512 4 64 2,707,456 337,735 548.9

32,128,512 8 128 5,414,912 347,373 1093.0

Columns two and three specify the numbers of timesteps on the coarsest and finest levels, respectively. The multilevel init option is

used, with no flux limiter. In the upper portion of the table timesteps are determined in the same way as for Table 2, while the lower

part of the table shows the temporal convergence behavior for a single fixed grid layout.
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level resolves the essential features of the solution, or when rapid resolution-dependent temporal variation

is confined to the fine level. (If neither of these conditions hold, the best approach might be to abandon

subcycling, and advance all levels at the same timestep.) When the multilevel init option is not used, the

method works well only when the coarse level resolves the essential features of the solution. Finally, careful

examination of the timings presented in the tables suggests that the multilevel solver is a disproportionately

expensive part of the algorithm. (In some cases this solver accounts for more than half of the total time.)

New features being added to the hypre library should improve the multilevel solver performance signifi-

cantly.
The multilevel init option is not used for any of the remaining examples in this paper, since they do not

exhibit the extreme dependence on resolution that would make it necessary.

Our next test is a 3D nonlinear thermal wave, computed in an insulating unit cube with a 64� 64� 64
base level and a single additional level refined by a factor of 2. We take a single fluid, initially cold

(T ¼ e ¼ 10�6, cv ¼ 1, q ¼ 1), and add a hot spot against one wall with total energy 0.5. Constants are
r ¼ 10�2, c ¼ 108, coefficients are jR ¼ T 1=2, jP ¼ 105T�1. Hydrodynamics is enabled, with c ¼ 1:4. (This
seemingly bizarre combination of parameters has made the problem well-suited for exploring a variety of

issues, including radiation-fluid coupling, linearization strategies, flux limiters, and so on. Most of these will
not be detailed here.)

At early time the hot fluid radiates over 96% of its energy into the radiation field. The hot spot expands

through nonlinear diffusion with a sharp thermal front and very little fluid motion. As the heated region

expands and cools, the progress of this front slows dramatically. Energy moves from the radiation back into

the fluid. At later times a shock develops, and hydrodynamics takes over as the dominant physical process.

In order to capture the behavior over the wide range of time scales, we use a timestep Dt ¼ 1:1n�1 � 10�15
for step n on the coarse level. Time differencing uses the centered scheme (h ¼ 1=2). Nonlinearities are
converged. The flux limiter is turned off, so that we can compare against an analytic solution, presented in
[26], that is valid during the thermal wave phase. A simple refinement criterion is used which places fine

grids near the front, rearranging them as needed every two coarse timesteps.

The job was run in parallel on an IBM SP-2. Grid size was limited to a maximum of 16� 16� 16, so
there were 64 grids at level 0. Level 1 went from an initial 4 grids to 357 grids comprising 30% of the domain

at timestep 280 (t ¼ 0:00389). We used 32 processors for the early part of the calculation, increasing this to
64 after timestep 200.

Fig. 7 shows radiation energy, density, temperature, and the difference between computed temperature

and the analytic solution. The slices are taken in three perpendicular planes containing the original hot
spot, to show that the grid arrangement is not completely symmetric. The grid generator [7] fits grids

around all tagged cells, then trims and splits grids as necessary until a specified efficiency is reached. The

resulting grid arrangement is typically not symmetric, even for symmetric data as we have here. The im-

portant thing to note, though, is that the asymmetric grid distributions have not caused noticeable

asymmetries in the computed solution. Fig. 8 further illustrates this point.

The solution near the core of the hot region is smooth, and has therefore been de-refined. Significant

energy fluxes cross the coarse–fine interfaces inside the hot region. No grid artifacts associated with these

interfaces are visible in the solutions. The most noticeable differences between the computed and the an-
alytic solution are simply discretization effects at the sharp front. The system conserves energy from be-

ginning to end of the calculation to the full accuracy of the multigrid solver.

Fig. 9 shows the same system recomputed several times in 1D spherical coordinates to compare the

effects of different options for the sync solve. The AMR time step algorithm in the previous section pre-

sented the synchronization step as the computation of a correction ~EER to the radiation field, which was then
applied directly to the radiation and fluid energies. Use of this form of the sync with h ¼ 1 produces a
solution with an obvious zig-zag marking the location of the coarse–fine interface. Linearization of the

coupling between the fluid and radiation energies, as is done in the level solves, produces the smoother solid
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line. A time-centered discretization (h ¼ 1=2) yields the still more accurate dotted line—linearization of the
sync for this case makes too small a difference to see clearly in the plot. For comparison, the two dashed

lines show the nonconservative results for both time discretizations with no sync solves at all. The upper

curve uses h ¼ 1 and has gained about 2% over the original energy in the problem, while the lower curve

with h ¼ 1=2 has lost about 1% of its energy.
Tables 4 and 5 show the convergence behavior for this problem as the grids are refined. Timestep se-

quences are chosen so that doubling the resolution of the coarse grid doubles the number of coarse

timesteps. For all of the tests shown—both single grid and AMR—the dominant errors occurred at the

front. The basic features seen in Fig. 9, including the greatly reduced errors behind the front for h ¼ 1=2,
were reproduced at all resolutions. The error norms changed significantly from one timestep to the next as

the front moved from cell to cell, so the exact numbers presented here should not be given too much weight

in the interpretation.

Conclusions we can draw from the convergence study are as follows: First, the effects of hydrodynamics
were not significant at this stage in the calculation and can safely be ignored. Second, results were improved

by use of the time-centered formulation, even though convergence rates were limited to first order (possibly

Fig. 7. A nonlinear thermal wave expanding from a point heat source in 3D, with adaptive mesh refinement. Different slices are shown

to illustrate asymmetries in grid layout. Fields shown are radiation energy, density, temperature, and the difference between computed

temperature and an analytic solution. The maximum value in this last field is only a tenth of the maximum temperature. At this point in

the calculation the density variations shown are less than 1% of the background density, as radiation transport is still dominant.
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due to the dominance of errors at the front). Third, the sync solve was essential to the performance with an

adaptive mesh. (Though the characteristic zig-zag associated with the simple sync was visible in AMR plots

at all resolutions, no significant difference between the simple and linearized sync options is observable in

the norms.) Fourth, and most important, errors on adaptive meshes corresponded most closely to errors
obtained with uniform meshes equivalent in resolution to the finest AMR grid levels.

A final test of the code includes multiple materials with realistic tabular equations of state and opacities

[25]. It is a prototype of a class of experiments featuring supersonic jets and interacting shock waves

currently being conducted on the Omega Laser at the University of Rochester [24]. In these experiments,

laser light is directed into two gold hohlraums surrounding the experimental package as shown in Fig. 10.

Fig. 9. The thermal wave of Fig. 7, recomputed in 1D spherical coordinates with different algorithmic options. The difference between

the computed temperature and the analytic solution is shown as a function of radius. Solid lines: backward-Euler discretization (h ¼ 1),
upper line uses linearized sync, lower line uses the sync as presented in the previous section (these lines only differ visibly near R ¼ 0:3).
Dotted line: time-centered discretization (h ¼ 1=2). Dashed lines: no sync solve, nonconservative, upper line has h ¼ 1, lower line has
h ¼ 1=2.

Fig. 8. Four cross-sections through the fourth (lower-right) plot of Fig. 7: difference between the computed temperature and the

analytic solution. That plot is in the yz plane, in this one cuts are shown at y ¼ 0:5 (solid), 0.625 (dots), 0.75 (dashes) and 0.875 (long
dashes). The point is that each curve is symmetric, even though the grid layout is not.
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Fig. 10. The experimental package is situated between two gold hohlraums as shown in this axisymmetric view. Laser light enters

through the upper and lower holes and shines on the inner gold surfaces producing a hot plasma that serves as the radiation source to

drive the experiment.

Table 4

Single grid convergence study for the thermal wave problem in 1D spherical coordinates

Resolutions Cells advanced Hydro off Hydro on

h ¼ 1 h ¼ 1=2 h ¼ 1 h ¼ 1=2

32 4480 0.0168 0.0149 0.0169 0.0150

64 17920 0.00597 0.00337 0.00580 0.00328

128 71680 0.00303 0.00162 0.00289 0.00156

256 286720 0.00168 0.00096 0.00155 0.00094

Since the analytic solution does not include hydrodynamic effects, results are shown both with and without hydrodynamics. Values

given are the 1-norm differences between the computed temperatures and the analytic solution.

Table 5

Adaptive mesh convergence study for the thermal wave problem in 1D spherical coordinates with hydrodynamic effects included

Resolutions Cells

advanced

No sync Simple sync Linearized sync

h ¼ 1 h ¼ 1=2 h ¼ 1 h ¼ 1=2 h ¼ 1 h ¼ 1=2

32,64 8480 0.00637 0.00417 0.00560 0.00330 0.00592 0.00332

64,128 27136 0.00466 0.00414 0.00356 0.00162 0.00362 0.00163

128,256 92912 0.00389 0.00370 0.00221 0.00097 0.00222 0.00097

The figures for cells advanced are based on the h ¼ 1=2 case with linearized sync. (Other options gave slightly different figures
because grid generation was based on computed solution gradients.) Values given are the 1-norm differences between the computed

temperatures and the analytic solution.

L.H. Howell, J.A. Greenough / Journal of Computational Physics 184 (2003) 53–78 75



The gold absorbs the laser energy and emits X-rays forming a hot plasma, or thermal radiation bath, within

the hohlraum. This hot plasma serves as the radiation source that then drives the experiment. Note that in

the simulations presented here, no attempt is made to explicitly model the hohlraum.

A detailed view of the experimental package is shown on the left side of Fig. 11. The materials are la-

belled in the figure. They are initialized to room temperature (298 K) with initial densities of qCHð1Þ ¼ 1:046
g/cc, qCHð2Þ ¼ 0:001 g/cc, qAl ¼ 2:7 g/cc and qMo ¼ 10:228 g/cc. The plastics (polystyrene), CH(1) and CH(2)
indicate two different densities, not different compositions. Molybdenum is used as a simulant for the gold

in the physical experiment because material data tables for gold were not available. The entire computa-
tional domain is shown in the figures. The geometry is axisymmetric about the left boundary (z-axis). The
radial extent (left to right) is 0.1 cm and the axial extent is 0.2 cm. For the hydrodynamics, the axis of

revolution is a symmetry boundary while all others are inflow/outflow. For the radiation field, all

boundaries are homogeneous Neumann (i.e., insulated).

The simulation was run with a 64� 128 base grid and 3 levels of refinement, each by a factor of 2. This
gave an effective resolution of 2 lm on the finest level. All mixed cells were tagged for refinement at the

finest level; this was the only refinement criterion used. A CFL number of 0.3 was used to determine Dt.
Each call to the radiation solver iterated the nonlinearity in the blackbody emission to convergence, but
held the absorption coefficients fixed.

In the calculation, radiation energy is introduced into the low density plastic regions symmetrically both

above and below the aluminum blocks as a function of time. This effectively models the radiation field

Fig. 11. The initial and final (t ¼ 7:43 ns) log(q) fields for the Omega Laser supersonic jet and interacting shock wave experiment are
shown from left to right, respectively. The materials are as labeled and designated by color. CH(1) and CH(2) are polystyrene at two

different densities, Al is aluminum and Mo is molybdenum. At the final time the upward propagating Al jet and the counter-prop-

agating jet have interacted. The AMR grid layout is shown for reference.
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produced by the 1 ns pulse laser incident onto the hohlraums. As the radiation burns into the metals (Al

and Mo), it ablates and drives shock waves into the materials. Note that the asymmetry in the aluminum

blocks (top to bottom) leads to an asymmetric flow later in time. Converging shock waves in the lower Al

block lead to the formation of a supersonic jet and accompanying bow shock. In the upper aluminum

block, a nearly planar shock is launched that later interacts with the jet. This is shown with log(q) in the
right side of Fig. 11 at t ¼ 7:43 ns. The physical experiment was imaged by radiography (5 keV photon
energy backlighter). Simulated radiographs prepared from the numerical simulation showed good quali-

tative agreement with the experimental results, and more detailed work is currently underway.
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